Multinuclear solid state NMR studies of phosphate glass samples

Samples:

> 45% P_2O_5 + 30% CaO + (25-*x*)% Na₂O + *x*% δ Where δ = Cu₂O, CuO, $\frac{1}{2}$ Cu₂O

And:

> 50% P_2O_5 + 30% CaO + (20-*x*)% Na₂O + *x*% δ Where $\delta = Ag_2SO_4$

Example of the Cu doped spectra obtained using the 360MHz spectrometer

Peak Integration

Interpretation of Cu Data (I)

CuO doped samples:

- Q¹ remains constant
- Q² decreases with increasing CuO
- Q³ increases with increasing CuO
 - $\therefore Q^2 \longrightarrow Q^3$

Cu₂O and ½ Cu₂O doped samples:

- Q¹ decreases with increasing Cu₂O
- Q² decreases with increasing Cu₂O
- Q³ increases with increasing Cu₂O

Interpretation of Cu Data (II)

This correlation between increasing Cu content and the change in Q species suggests:

- As Cu % increases we are forming more bridging oxygen atoms between the ³¹P atoms in the sample.
- This was unexpected as the Cu atoms were expected to bond to these oxygen atoms, hence reducing the number of bridging oxygen atoms to phosphorous atoms.

Interpretation of Cu Data (III)

- The ternary sample 45% P₂O₅ + 30% CaO + 25% Na₂O was found to contain less Q¹ than any of the 1% Cu doped samples which brings into question the general decreasing trend in the Q¹ species found in each case.
- Q² → Q³ when more Cu is added to the system.
- The next step is to find out why...???

Example of the Ag doped spectra obtained using the 360MHz spectrometer

Interpretation of Ag Data (I)

Ag doped samples:

- Predicted to be all Q²
- All 100% Q² species present until 20% of Ag₂SO₄ is added
- At 20% doping we have 87% Q²,8% Q³ and 4% Q¹
- Also present is an unidentified peak (2%)
- Why???

Peak Integration

Ag doped, crystallised phosphate glasses

- The crystalline phase is less anisotropic than the glass phase, this gives rise to:
 - Narrower peaks
 - No related side bands
 - Different T₁ relaxation to the glass peak

Effects of different T₁ relaxation

Table of Data

0	Pe	ak 1 (Q¹)		Pe	ak 2 (Q²)		Pe	ak 3 (Q³)	
content	δ _{iso} / ppm ±0.2ppm	∆	 / % ± 1%	δ _{iso} / ppm ± 0.2ppm	∆	/ % ± 1%	δ _{iso} / ppm ±0.2ppm	∆	/% ±1%
0	-6.5	8.0	16	-22.5	9.8	84			0
CuO 1%	2.6	10.1	23	-13.5	12.1	77			0
Cu ₂ O 1%	2.2	10.0	24	-13.6	10.8	76			0
half Cu ₂ O 1%	2.2	9.5	22	-13.7	11.2	78			0
CuO 5%	-6.6	12.1	23	-22.2	12.3	69	-34.8	12.8	8
Cu ₂ O 5%	-6.7	10.9	18	-22.5	12.1	74	-35.9	14.3	7
half Cu ₂ O 5%	-7.1	10.6	17	-22.8	11.8	78	-34.8	11.6	6
CuO 10%	-7.3	13.9	22	-23.0	14.1	64	-38.0	14.6	14
Cu ₂ O 10%	0.4	13.1	16	-15.0	13.3	73	-28.0	12.6	10
half Cu ₂ O 10%	-7.7	12.7	14	-23.5	13.3	75	-37.7	15.0	10

Potential Papers

- Nb2O5 SiO2 Sol-Gel Binary & Nb2O5 TiO2 - SiO2 Sol-Gel Ternary XRD & EXAFS (Possibility to split into two papers) All results finished, just need to write paper/papers.
 - TiO2 SiO2 in-situ gelation XRD (Not sure if the results are particularly interesting)

Results have been looked at and don't seem to show much change with time. Needs further work.

TiO2 – SiO2 in-situ heat treatment XRD Results look promising. Need to fit individual scans.

$(Nb_2O_5)_{0.0375} - (TiO_2)_{0.075} - (SiO_2)_{0.8875}$ heated *ex-situ*

$(Nb_2O_5)_{0.0375} - (TiO_2)_{0.075} - (SiO_2)_{0.8875}$ heated in-situ

$(Nb_2O_5)_{0.0375} - (TiO_2)_{0.075} - (SiO_2)_{0.8875}$ heated in-situ

Differences caused by errors in the density

UCL (Eastman Dental Institute) - Kent-Warwick-Imperial Sol- Gel Project Meeting

Dr. Ifty Ahmed

Silver-Doped Glasses Investigated:

Composition Mol%				
	P ₂ O ₅	CaO	Na ₂ O	Ag
P50 C30 N20	50	30	20	0
P50 C30 N19 + Ag = 1	50	30	19	1
P50 C30 N18 + Ag = 2	50	30	18	2
P50 C30 N17 + Ag = 3	50	30	17	3
P50 C30 N16 + Ag = 4	50	30	16	4
P50 C30 N15 + Ag = 5	50	30	15	5
P50 C30 N10 + Ag = 10	50	30	10	10
P50 C30 Ag = 20	50	30	0	20

Degradation Studies conducted in Nutrient Broth and dH2O:

Study conducted in Nutrient Broth

Study conducted in dH2O

pH Studies conducted in Nutrient Broth and dH2O:

Study conducted in Nutrient Broth

Study conducted in dH2O

Cation Release from Silver-Doped PBG's:

Sodium ion release profiles

Calcium ion release profiles

Anion Release from Silver-Doped PBG's (I):

 $P_2O_7^{4-}$ anion release profiles

Anion Release from Silver-Doped PBG's (II):

 $P_3O_9^{3-}$ anion release profiles

 $P_3O_{10}^{5-}$ anion release profiles

Density of Ag Compositions Investigated:

Average Tg Data Using DTA + DSC:

Average Tg Data Using DTA + DSC:

UCL (Eastman Dental Institute) - Kent-Warwick-Imperial Sol- Gel Project Meeting

E. A. Abou Neel and J.C. Knowles

K₂O Containing Glass Code and Compositions Investigated

Glass code	P ₂ O ₅	CaO	Na ₂ O	K ₂ O
	(mol %)	content (mol %)	content (mol %)	content (mol %)
0 % K ₂ O	50	20	30	0
5 % K ₂ O	50	20	25	5
10 % K ₂ O	50	20	20	10
15 % K ₂ O	50	20	15	15
20 % K ₂ O	50	20	10	20
25 % K ₂ O	50	20	5	25
30 % K ₂ O	50	20	0	30

Differential Thermal Analysis

Accumulative Degradation Study in Deionised Water

eastman Dental INSTITUTE

pH Change

Titanium Containing Glass Compositions under Investigation

Glass code	P ₂ O ₅ content (mol %)	CaO content (mol %)	Na ₂ O content (mol %)	TiO ₂ content (mol %)
1 % TiO ₂	50	30	19	1
3 % TiO ₂	50	30	18	3
5 % TiO ₂	50	30	17	5

Cell Viability of MG63 on Titanium Containing Glass Discs

eastman Dental INSTITUTE

Sol-gel Meeting 27/01/2006

Vicky FitzGerald

Bioglass[®] XRD

Bioglass[®] XRD

Tantalum Model 10%

XRD Data			RMC Model		
Bond	Distance / Å	Co-ordination	Bond	Distance / Å	Co-ordination
Si - O	1.61	4.5	Si - O	1.61	3.79
Ta - O	1.91	3.6	Ta - O	1.81	4.63
Ta - O	2.06	1.1	Ta - O	1.95	
0-0	2.64	4.7	0 - 0	2.62	5.16
Si - Si	3.05	4.4	Si - Si	3	3.94
Si - Ta	3.38	6.1	Si - Ta	3.53	3
Ta - Ta	3.72	2.2	Ta - Ta	3.75	0.32

Si-O close-up

Tantalum Model 40%

XRD Data			RMC Model		
Bond	Distance / Å	Co-ordination	Bond	Distance / Å	Co-ordination
Si - O	1.61	4.1	Si - O	1.61, 1.90	3.22
Ta - O	1.9	2.9	Ta - O	1.7	4.79
Ta - O	2.07	2	Ta - O	2	
0-0	2.57	5.1	0 - 0	2.21	5.13
Si - Si	3.03	3.5	Si - Si	3.21	3.86
Si - Ta	3.35	6.1	Si - Ta	3.25	3
Ta - Ta	3.75	2.7	Ta - Ta	3.55	2.75

Si-O close-up

S70C30 Foam RMC

XRD Data			RMC Model		
Bond	Distance / Å	Co-ordination	Bond	Distance / Å	Co-ordination
Si - O	1.61	4.15	Si - O	1.61	3.89
Ca - O	2.32	2.4	Ca - O	2.2	Total 5.97 Ca-O
Ca - O	2.5	2.4	Ca - O	2.55	
0 - 0	2.63	5.7	0-0	2.45	4.77
Ca - O	2.76	1	Ca - O	3.1	
Si - Si	3.03	4	Si - Si	3	3.72
Si - Ca	3.22	not fitted	Si - Ca	3.22	1.08
Ca - Ca	3.52	not fitted	Ca - Ca	3.46	2.46

Si-O close-up

PHOSPHOBORATE GLASSES

Sol-gel synthesis of Phosphoborate glasses <u>without SiO</u> Very few studies:

P₂O5-B₂O₃-Al₂O₃ Amorphous up to 500 C (J. Mater. Chem., 2005, 15,1640)

P₂O₅-B₂O₃-Li₂O Crystallise at 120 C (J. Mater. Res., 1999, 14, 4)

$P_2O_5-B_2O_3-Na_2O_3$

 $P_2O_5-B_2O_3-CaO$

Sol-Gel Synthesis

P precursor: $P_2O_5 + 3EtOH \rightarrow OP(OEt)(OH)_2 + OP(OEt)_2(OH)$

P ₂ O ₅	B_2O_3	Na ₂ O	CaO	B Precursor	
30	40	30		B(OEt)3	х
30	30	40		B(OEt)3	х
40	40	20		B(OEt)3	
40	30	30		B(OEt)3	
40	20	40		H3BO3	
40	20	40		B(OEt)3	
40	10	50		B(OEt)3	х
45	10	45		B(OEt)3	
50	40		10	B(OEt)3	
50	30		20	B(OEt)3	

Gelation time 10-15 days

Intensity (a.u.)

XRD 300 C

Conclusions

 $P_2O_5-B_2O_3-Na_2O$ and $P_2O_5-B_2O_3-CaO$

All mainly amorphous up to 200C Samples with $B_2O_3 < 40$ mol% amorphous up to 300C Samples with $B_2O_3 > 40$ mol% BPO₄ phase ppt

Future Work

 $\mathsf{P}_2\mathsf{O}_5\text{-}\mathsf{B}_2\mathsf{O}_3\text{-}\mathsf{Na}_2\mathsf{O}\,$ with $\mathsf{P}_2\mathsf{O}_5$ 50 mol%

Add small amount of SiO₂

Characterise BPO₄ phase (nanocrystalline?) BPO₄ Li-doped for Li-ion batteries Low dielectric constant Samples sent for TEM

Ag K-edge XANES

Problem: Ag K-edge XANES not sensitive to small changes in geometry of Ag site (*Sipr et al. Phys. Rev. B* 69 134201)

Ag K-edge EXAFS

P50N10Ag20

EF	13.8	VPI	0.00	AFAC	0.93		
EM N	66.4	EMAX	661.	SPARE7	-1.00		
LMAX	25.0	MTR1	1.44	MTR2	1.00		
MFR3	1.28	MTR4	1.97	MTR5	1.44		
FI 0.0	00086 1	R 35.68	R0 0	.000 A0	0.010	-1	0
NI	4.1 T1	2 (O) R	21 2	.277 Al	0.029	1	0
N2	3.9 T2	2(O) R	2 2	.626 A2	0.040	1	0
NB	6.0 T3	3 (P) R	3 3	.630 A3	0.052	1	0

Exper i nent r25506.prn r25506.par Paraneters Phases hifts exphsa1.agc exphsa1.0 exphsa1.p exphsa1.ca exphsal.ag

Sample	Shell	N	R / Å	A / Å-2	<i>R</i> / %
P50C30N10Ag10	Ag-O Ag-O Ag-P	4 2 6	2.22 2.55 3.41	0.024 0.021 0.042	35.5
P50C30Ag20	Ag-O Ag-O Ag-P	4.1 3.9 6	2.28 2.63 3.63	0.029 0.040 0.052	35.7

High energy XRD on Ag-doped samples

Sample	Density /gcm ⁻³		
	UKC	UCL	
P50C30N20	2.52	2.60	
P50C30N10Ag10	2.78	2.81	
P50C30Ag20	2.42		

Neutron diffraction

	Instrument: GEM	User Newport
	Run number 27231	Run start time: 24-Nov-2005 10 56 12
	Spectrum 6	Plot date: 26-Jan-2006 17:36:29+0100
0.01		Grouping: 1
	Location: C:70RUMNov05EM27231.dcs01	

2.5 r / Angelrome

3

3.5

4

4,5

5

2

76

0.5

1

1,5

Sample Preparation

SiO₂

0.6

0.6

0.6

0.6

0.7

0.6

